Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1251602, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954249

RESUMEN

Introduction: This work investigates whether rhizosphere microorganisms that colonize halophyte plants thriving in saline habitats can tolerate salinity and provide beneficial effects to their hosts, protecting them from environmental stresses, such as aromatic compound (AC) pollution. Methods: To address this question, we conducted a series of experiments. First, we evaluated the effects of phenol, tyrosine, 4-hydroxybenzoic acid, and 2,4-dichlorophenoxyacetic (2,4-D) acids on the soil rhizosphere microbial community associated with the halophyte Allenrolfea vaginata. We then determined the ability of bacterial isolates from these microbial communities to utilize these ACs as carbon sources. Finally, we assessed their ability to promote plant growth under saline conditions. Results: Our study revealed that each AC had a different impact on the structure and alpha and beta diversity of the halophyte bacterial (but not archaeal) communities. Notably, 2,4-D and phenol, to a lesser degree, had the most substantial decreasing effects. The removal of ACs by the rhizosphere community varied from 15% (2,4-D) to 100% (the other three ACs), depending on the concentration. Halomonas isolates were the most abundant and diverse strains capable of degrading the ACs, with strains of Marinobacter, Alkalihalobacillus, Thalassobacillus, Oceanobacillus, and the archaea Haladaptatus also exhibiting catabolic properties. Moreover, our study found that halophile strains Halomonas sp. LV-8T and Marinobacter sp. LV-48T enhanced the growth and protection of Arabidopsis thaliana plants by 30% to 55% under salt-stress conditions. Discussion: These results suggest that moderate halophile microbial communities may protect halophytes from salinity and potential adverse effects of aromatic compounds through depurative processes.

2.
Environ Res ; 233: 116442, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37343755

RESUMEN

Perchlorate has been described as an emerging pollutant that compromises water sources and human health. In this study, a new electrotrophic perchlorate reducing microorganism (EPRM) isolated from the Atacama Desert, Dechloromonas sp. CS-1, was evaluated for perchlorate removal in water in a bioelectrochemical reactor (BER) with a chemically modified electrode. BERs were operated for 17 days under batch mode conditions with an applied potential of -500 mV vs. Ag/AgCl. Surface analysis (i.e., SEM, XPS, FT-IR, RAMAN spectroscopy) on the modified electrode demonstrated heterogeneous transformation of the carbon fibers with the incorporation of nitrogen functional groups and the oxidation of the carbonaceous material. The BERs with the modified electrode and the presence of the EAM reached high cathodic efficiency (90.79 ± 9.157%) and removal rate (0.34 ± 0.007 mol m-3-day) compared with both control conditions. The observed catalytic enhancement of CS-1 was confirmed by a reduction in the charge transfer resistance obtained by electrochemical impedance spectroscopy (EIS). Finally, an electrochemical kinetic study revealed an eight-electron perchlorate bioreduction reaction at -638.33 ± 24.132 mV vs. Ag/AgCl. Therefore, our results show the synergistic effect of EPRM and chemically modified electrodes on perchlorate removal in a BER.


Asunto(s)
Nitrógeno , Percloratos , Humanos , Espectroscopía Infrarroja por Transformada de Fourier , Nitrógeno/metabolismo , Electrodos , Oxidación-Reducción
3.
Environ Res ; 233: 116450, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37343761

RESUMEN

Perchlorate and chlorate are endocrine disruptors considered emerging contaminants (ECs). Both oxyanions are commonly associated with anthropogenic contamination from fertilizers, pesticides, explosives, and disinfection byproducts. However, the soils of the Atacama Desert are the most extensive natural reservoirs of perchlorate in the world, compromising drinking water sources in northern Chile. Field campaigns were carried (2014-2018) to assess the presence of these ECs in the water supply networks of twelve Chilean cities. Additionally, the occurrence of perchlorate, chlorate and other anions typically observed in drinking water matrices of the Atacama Desert (i.e., nitrate, chloride, sulfate) was evaluated using a Spearman correlation analysis to determine predictors for perchlorate and chlorate. High concentrations of perchlorate (up to 114.48 µg L-1) and chlorate (up to 9650 µg L-1) were found in three northern cities. Spatial heterogeneities were observed in the physicochemical properties and anion concentrations of the water supply network. Spearman correlation analysis indicated that nitrate, chloride, and sulfate were not useful predictors for the presence of perchlorate and chlorate in drinking water in Chile. Hence, this study highlights the need to establish systematic monitoring, regulation, and treatment for these EC of drinking water sources in northern Chilean cities for public health protection.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Agua Potable/química , Cloratos/análisis , Chile , Nitratos/análisis , Percloratos , Ciudades , Cloruros/análisis , Contaminantes Químicos del Agua/análisis
4.
Bioelectrochemistry ; 152: 108458, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37178525

RESUMEN

A new extremophilic isolate (USS-CCA7) was obtained from an acidic environment (pH âˆ¼ 3.2) in Antarctica phylogenetically related to Acidithiobacillus ferrivorans; its electrotrophic capacities were evaluated in a three-electrode electrochemical cell. Cyclic voltammetry showed cathodic peaks of -428 mV, -536 mV, and -634 mV (vs. Ag/AgCl; pH = 1.7; 3 M KCl) for nitrate, oxygen, and perchlorate, respectively. The catalytic role of this microorganism was also observed by a decrease in the charge transfer resistance registered via electrochemical impedance spectroscopy. Five-day chronoamperometry of culture at pH = 1.7, USS-CCA7 showed a perchlorate removal rate of 19.106 ± 1.689 mgL-1 day-1 and a cathodic efficiency of 112 ± 5.2  %. Growth on electrodes was observed by epifluorescence and scanning electron microscopy. Interestingly, the results showed that toward higher pH, the cathodic peak of perchlorate is reduced in the voltammetric profiles. This study highlights the use of this psychrotolerant acidophile for the bioremediation of harsh perchlorate-pressured terrestrial under acidic conditions.


Asunto(s)
Drenaje , Percloratos , Regiones Antárticas , Microscopía Electrónica de Rastreo , Electrodos
5.
J Environ Manage ; 323: 116294, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36261994

RESUMEN

Municipal and industrial wastewater discharges in coastal and marine environments are of major concern due to their high carbon and nitrogen loads and the resulted phenomenon of eutrophication. Bioelectrochemical reactors (BERs) for simultaneous nitrogen and carbon removal have gained attention owing to their cost efficiency and versatility, as well as the possibility of electrochemical enrich specific groups. This study presented a scalable two-chamber BERs using graphite granules as electrode material. BERs were inoculated and operated for 37 days using natural seawater with high concentrations of ammonium and acetate. The BERs demonstrated a maximum current density of 0.9 A m-3 and removal rates of 7.5 mg NH4+-N L-1 d-1 and 99.5 mg L-1 d-1 for total organic carbon (TOC). Removals observed for NH4+-N and TOC were 96.2% and 68.7%, respectively. The results of nutrient removal (i.e., ammonium, nitrate, nitrite and TOC) and microbial characterization (i.e., next-generation sequencing of the 16S rRNA gene and fluorescence in situ hybridization) showed that BERs operated with a poised cathode at -260 mV (vs. Ag/AgCl) significantly enriched nitrifying microorganisms in the anode and denitrifying microorganisms and planctomycetes in the cathode. Interestingly, the electrochemical enrichment did not increase the total number of microorganisms in the formed biofilms but controlled their composition. Thus, this work shows the first successful attempt to electrochemically enrich marine nitrifying and denitrifying microorganisms and presents a technique to accelerate the start-up process of BERs to remove dissolved inorganic nitrogen and total organic carbon from seawater.


Asunto(s)
Compuestos de Amonio , Grafito , Nitrógeno/química , Desnitrificación , Nitrificación , Aguas Residuales , Carbono , Nitratos , Reactores Biológicos , ARN Ribosómico 16S , Nitritos , Hibridación Fluorescente in Situ , Agua de Mar
6.
Bioelectrochemistry ; 147: 108171, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35689910

RESUMEN

This study evaluated the electrochemical capacity of four perchlorate-reducing microorganisms (PRMs) isolated from an Altiplanic Andean watershed naturally pressured with perchlorate. Three-electrode electrochemical cells were used to test the electrochemical activity of the obtained isolates. Electrochemical evaluation (i.e., cyclic voltammetry, electrochemical impedance spectroscopy, chronoamperometry) revealed that two isolates identified as Dechloromonas sp. CS-1 and Clostridioides sp. CS-2 are electrochemically active PRMs. Bacterial isolates exhibiting cathodic peaks at -651 mV and -303 mV (vs. Ag/AgCl) for CS-1 and CS-2, respectively. Electrotrophic perchlorate removal was demonstrated by a 6-days chronoamperometry with removal rates of 27 and 17 mg L-1 day-1 and cathodic efficiencies of 93% and 45%, for CS-1 and CS-2, respectively. Chemical and electrochemical results suggest two different mechanisms of electrotrophic perchlorate removal, a complete eight-electron bio-reduction (i.e., perchlorate to chloride) for CS-1 and a partial two-electron bio-reduction (i.e., perchlorate to chlorate) for CS-2. The observed differences could be linked to their enzymatic differences, as in their membrane compositions. Thus, the results of this work increase the limited number of known electrotrophic microorganisms and expand the application of bioelectrochemical systems to develop new perchlorate treatment and remediation technologies.


Asunto(s)
Bioprospección , Percloratos , Electrodos , Electrones , Oxidación-Reducción
7.
Front Microbiol ; 12: 723874, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367123

RESUMEN

Perchlorate is an oxidative pollutant toxic to most of terrestrial life by promoting denaturation of macromolecules, oxidative stress, and DNA damage. However, several microorganisms, especially hyperhalophiles, are able to tolerate high levels of this compound. Furthermore, relatively high quantities of perchlorate salts were detected on the Martian surface, and due to its strong hygroscopicity and its ability to substantially decrease the freezing point of water, perchlorate is thought to increase the availability of liquid brine water in hyper-arid and cold environments, such as the Martian regolith. Therefore, perchlorate has been proposed as a compound worth studying to better understanding the habitability of the Martian surface. In the present work, to study the molecular mechanisms of perchlorate resistance, a functional metagenomic approach was used, and for that, a small-insert library was constructed with DNA isolated from microorganisms exposed to perchlorate in sediments of a hypersaline pond in the Atacama Desert, Chile (Salar de Maricunga), one of the regions with the highest levels of perchlorate on Earth. The metagenomic library was hosted in Escherichia coli DH10B strain and exposed to sodium perchlorate. This technique allowed the identification of nine perchlorate-resistant clones and their environmental DNA fragments were sequenced. A total of seventeen ORFs were predicted, individually cloned, and nine of them increased perchlorate resistance when expressed in E. coli DH10B cells. These genes encoded hypothetical conserved proteins of unknown functions and proteins similar to other not previously reported to be involved in perchlorate resistance that were related to different cellular processes such as RNA processing, tRNA modification, DNA protection and repair, metabolism, and protein degradation. Furthermore, these genes also conferred resistance to UV-radiation, 4-nitroquinoline-N-oxide (4-NQO) and/or hydrogen peroxide (H2O2), other stress conditions that induce oxidative stress, and damage in proteins and nucleic acids. Therefore, the novel genes identified will help us to better understand the molecular strategies of microorganisms to survive in the presence of perchlorate and may be used in Mars exploration for creating perchlorate-resistance strains interesting for developing Bioregenerative Life Support Systems (BLSS) based on in situ resource utilization (ISRU).

8.
Bioresour Technol ; 315: 123818, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32688253

RESUMEN

Chlorate has been described as an emerging pollutant that compromises water sources. In this study, bioelectrochemical reactors (BERs) using Dechloromonas agitata CKB, were evaluated as a sustainable alternative for chlorate removal. BERs were operated under flow-recirculation and batch modes with an applied cell-voltage of 0.44 V over a resistance of 1 kΩ. Results show chlorate removal up to 607.288 mg/L. After 115 days, scanning electron microscopy showed biofilm development over the electrodes, and electrochemical impedance spectroscopy confirmed the biocatalytic effect of CKB. The theoretical chlorate bioreduction potential (ε° = 0.792 V) was proven, and a kinetic study indicated that 6 electrons were involved in the reduction mechanism. Finally, a hypothetical bioelectrochemical mechanism for chlorate reduction in a BER was proposed. This research expands upon current knowledge of novel electrochemically active microorganisms and widens the scope of BER applications for chlorate removal.


Asunto(s)
Cloratos , Electrones , Betaproteobacteria , Electrodos , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...